If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-17a+4=0
a = 1; b = -17; c = +4;
Δ = b2-4ac
Δ = -172-4·1·4
Δ = 273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{273}}{2*1}=\frac{17-\sqrt{273}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{273}}{2*1}=\frac{17+\sqrt{273}}{2} $
| 2.2=z57 | | -2(2x+1)+3x-3=−7 | | -3(x-6)=4(2x-1) | | 9m+15=2m | | -8f+-1=55 | | -6=x|5 | | x(5/3)=-243 | | 2=(-2)(-3)+b | | 113+1x+11=180 | | w/3+14=30 | | c+16.5=13.5=10c | | -4.2x+6-8.3x=1/2(-9x+4) | | 1x+2+3x=90 | | .10x+.15=15 | | 4(3e+5)=6e-24 | | 5x+1+74=180 | | 8x-20-3x+8=10x+28 | | 2x+3(3x+25)=9 | | 4h+10=2h+12 | | -4+k=12 | | 3+65+4x=180 | | 2-3/4x=-4 | | -5|2w|=-50 | | 8k+12=2(k+-3) | | 75=30w | | 4(x−2)=4x−8 | | -3x5°=10 | | 3x+5x-5+3-2x-5=x-4+2x+3 | | 0.6x+3.8=8 | | 3x+5x-5+3-2x-5=x-4+2x+2 | | 5(x+3)-5=20 | | 3x²+29x+18=0 |